Skip to main content

A Comparison of Map-Based Methods for Handling Type-2 and Type-3 Problems of Digital Circuit Design | Chapter 07 | Advances in Applied Science and Technology Vol. 3

With the advent of digital computers, several prominent problems of digital circuit design emerged. A particular  elementary  class  of  these  problems,  (called  Type-2  problems)  can  be  divided  into  two subclasses depending on whether an honest translator is possible or a sneaky translator is warranted. The case of an honest translator is simply an inverse problem of logic, in which knowledge of the vectorial function Z(X) is utilised to produce its inverse vectorial function X(Z). Though an old method of solving type-2 problems was known almost half a century ago, two modern map-based methods are now possible, namely the method of Boolean-equation solving and the method of input-domain constraining.  The  paper  aims  to  expose  and  illustrate  these  two  novel  methods,  with  stress  on comparing them together and demonstrating their superiority to (as well as an agreement with) the old conventional method. This purpose is achieved by way of three typical classical examples for which conventional solutions are somewhat tedious and cumbersome, while modern solutions are simple and  insightful.  Throughout  these  examples,  the  Karnaugh  map  is  effectively  utilised,  either  in  its conventional version or in its variable-entered version. The Boolean-equation-solving method seems toinvolve certain unwarranted steps that might be possibly skipped. However, its map-based variant is an effective method for handling a related class of digital-design problems called Type-3 problems. An example of a Type-3 problem is given to show how this method resolves and circumvents a certain discrepancy  that  conventional  techniques  fell  short  of  handling  completely.  The  present  study exposed, illustrated, and compared the two methods of Boolean-equation solving and input-domain constraining, which are novel methods for handling Type-2 problems of digital circuit design. Three typical  classical  examples  are  presented,  for  which  known  conventional  methods  of  solution  are somewhat tedious and cumbersome, while the map-based methods of solution presented herein are simple and insightful. Throughout these examples, the Karnaugh map is effectively utilised, either in its  conventional  version  or  in  its  variable-entered  version.  When  used  with  Type-2  problems,  the Boolean-equation-solving method seems to involve certain unwarranted steps that might be possibly skipped. However, its map-based variant is an effective method for handling a related class of digital-design problems called Type-3 problems. An example of a Type-3 problem is given to show how this method  resolves  and  circumvents  a  certain  discrepancy  that  conventional  techniques  fell  short  of handling completely.

Author(s) Details

Ali Muhammad Ali Rushdi
Department of Electrical and Computer Engineering, King Abdulaziz University, P.O.Box80204, Jeddah 21589, Saudi Arabia.


Popular posts from this blog

Consensus Summit: Lipids and Cardiovascular Health in the Nigerian Population | Chapter 09 | Current Trends in Food Science Vol. 1

Aims: To issue a consensus statement on Lipids and Cardiovascular Health and the impact of their interrelationship in Nigerian Population. Study Design: Experts from a range of relevant disciplines, deliberated on different aspects of Lipids and Cardiovascular Health in the Nigerian Population at a Summit. Place and Duration of Study: The Summit was held in April 2016 at the Nigerian Institute of Medical Research. Methodology: Presentations were made on central themes after which expert participants split into four different groups to consider the questions relevant to different sub themes of the title. Consensus was arrived at, from presentations of groups at plenary. Conclusion: With the increase in the prevalence of NCDs, especially Cardiovascular Disease in Nigeria, and the documented evidence of deleterious effects of lipids, the expert panel called for an urgent need to advocate for the general public and health professionals to make heart-friendly

A Review on Gongronema latifolium, an Extremely Useful Plant with Great Prospects | Chapter 11 | Recent Advances in Biological Research Vol. 3

Gongronema latifolium is a plant that has a wide range of nutritional and ethnomedical uses in different tropical African communities. Scientific reports on the chemical composition and bioactivity (anti-inflammatory, antimicrobial, antidiabetic, antioxidant, anticancer and allelopathic properties) of the plant material by different authors are discussed in this review. Future prospects of the plant extracts in the areas of herbal formulations, food preservation, alcoholic fermentation and beer production, drug discovery and allelopathy are also highlighted. Author   Details: Olugbenga Morebise Faculty of Basic Medical Sciences, All Saints University School of Medicine, Roseau, Commonwealth of Dominica. Read full article: View Volume:

An Overview of Ultrasonic Technology and Its Applications in Food Processing, Preservation and Quality Control | Chapter 03 | Current Research in Science and Technology Vol. 3

Ultrasound is one of the emerging technologies that were developed to minimize processing, maximize quality and ensure the safety of food products. In recent years, ultrasound technology has been used as an alternative processing option to conventional thermal approaches. Although Ultrasonication methods have been used for years in research and diagnostics, major advances have been made in the last decade. The applications for which high power ultrasound can be used range from existing processes that are enhanced by the retrofitting of high power ultrasonic technology, to the development of processes up to now not possible with conventional energy sources. The present paper reviews the generation, principle mechanism, properties, process parameters, applications, merits and demerits and future trends of the ultrasound technology in the food processing. Author(s) Details Er. Bogala Madhu Department of Processing and Food Engineering, College of Technology and Engineering, MP