Skip to main content

A Matrix Vector Transition Net Implementation | Chapter 01 | Advances in Mathematics and Computer Science Vol. 1

Aims: Classic Petri nets also known as place transition nets provide many interesting and useful features for system modeling. They are however limited by the place types that are used. A novel approach is presented in this work. A matrix vector transition net model is created and is used to model complex system behavior. This solution extends the modeling power of normal Petri nets.

Proposed Solution: A traditional Petri net is modified to create a matrix vector transition net (MVTN). The idea is to combine the ideas from normal Petri net semantics with a matrix vector approach.

Implementing the Matrix Vector Transition Net: Ordinary Petri net places are replaced with matrices or vectors. The input and output arcs must have a specific function matrix that determines firing. Firing and behavior remain conceptually and functionally similar to that of a Petri net. It is possible to interchange row and column vectors. The behavior of matrix transition nets must elicit similar behavior to that of a place transition net. Instead of normal tokens, matrix elements are used. The matrix vector type of structure increases the modeling power, abstraction capacity and the complexity of the net.

Case Study: To illustrate this work a toy case of an abstract network structure containing processing elements is used to illustrate the use of the matrix vector transition net structure.

Results and Findings: The behavior of matrix transition nets is shown to be similar in principle to that of a place transition net. However instead of tokens, matrix elements are used. It is possible to construct a symbolic marking graph or reachability graph for the system This type of structure definitely increases the modeling power, abstraction capacity and the complexity of the net. The matrix transition net could be useful for certain types of communication system problems and complex system interfacing.  Several other uses can be found for this approach in both computing and modeling.

Author  Details:

Tony Spiteri Staines
Department of Computer Information Systems, University of Malta, MSIDA MSD 2080, Malta.

View Volume: https://doi.org/10.9734/bpi/amacs/v1

Comments

Popular posts from this blog

Consensus Summit: Lipids and Cardiovascular Health in the Nigerian Population | Chapter 09 | Current Trends in Food Science Vol. 1

Aims: To issue a consensus statement on Lipids and Cardiovascular Health and the impact of their interrelationship in Nigerian Population. Study Design: Experts from a range of relevant disciplines, deliberated on different aspects of Lipids and Cardiovascular Health in the Nigerian Population at a Summit. Place and Duration of Study: The Summit was held in April 2016 at the Nigerian Institute of Medical Research. Methodology: Presentations were made on central themes after which expert participants split into four different groups to consider the questions relevant to different sub themes of the title. Consensus was arrived at, from presentations of groups at plenary. Conclusion: With the increase in the prevalence of NCDs, especially Cardiovascular Disease in Nigeria, and the documented evidence of deleterious effects of lipids, the expert panel called for an urgent need to advocate for the general public and health professionals to make heart-friendly

A Review on Gongronema latifolium, an Extremely Useful Plant with Great Prospects | Chapter 11 | Recent Advances in Biological Research Vol. 3

Gongronema latifolium is a plant that has a wide range of nutritional and ethnomedical uses in different tropical African communities. Scientific reports on the chemical composition and bioactivity (anti-inflammatory, antimicrobial, antidiabetic, antioxidant, anticancer and allelopathic properties) of the plant material by different authors are discussed in this review. Future prospects of the plant extracts in the areas of herbal formulations, food preservation, alcoholic fermentation and beer production, drug discovery and allelopathy are also highlighted. Author   Details: Olugbenga Morebise Faculty of Basic Medical Sciences, All Saints University School of Medicine, Roseau, Commonwealth of Dominica. Read full article: http://bp.bookpi.org/index.php/bpi/catalog/view/50/403/433-1 View Volume: https://doi.org/10.9734/bpi/rabr/v3

An Overview of Ultrasonic Technology and Its Applications in Food Processing, Preservation and Quality Control | Chapter 03 | Current Research in Science and Technology Vol. 3

Ultrasound is one of the emerging technologies that were developed to minimize processing, maximize quality and ensure the safety of food products. In recent years, ultrasound technology has been used as an alternative processing option to conventional thermal approaches. Although Ultrasonication methods have been used for years in research and diagnostics, major advances have been made in the last decade. The applications for which high power ultrasound can be used range from existing processes that are enhanced by the retrofitting of high power ultrasonic technology, to the development of processes up to now not possible with conventional energy sources. The present paper reviews the generation, principle mechanism, properties, process parameters, applications, merits and demerits and future trends of the ultrasound technology in the food processing. Author(s) Details Er. Bogala Madhu Department of Processing and Food Engineering, College of Technology and Engineering, MP