Skip to main content

A Simulation Study of Artificial Heating of the Ionosphere by Powerful High Frequency Radio Waves | Chapter 6 | Advances and Trends in Physical Science Research Vol. 2

Results of numerical modeling of the behavior of the F-layer ionospheric plasma during the periods of action of powerful high frequency radio waves, utilized for artificial heating experiments and pumped into the ionosphere by ground-based ionospheric heaters, are presented and discussed. For obtaining the presented simulation results, two distinct mathematical models were applied. The first mathematical model is based on a numerical solution of the system of transport equations for ionospheric plasma. This mathematical model allows us to simulate large-scale disturbances of the spatial structure of the F-region ionosphere, caused by the absorbed energy of powerful high frequency radio waves. The second mathematical model is based on a numerical solution of the system of kinetic equations for ion and electron gases in the ionosphere. The latter mathematical model allows us to investigate numerically kinetic processes in ionospheric plasma, in particular, the behavior of magnetic field aligned super-small-scale irregularities in the concentration of charged particles. Moreover, this model has allowed us to establish new details of the mechanism responsible for artificial heating of ionospheric plasma by powerful high frequency radio waves, pumped into the ionosphere by ground-based ionospheric heaters. These new details of the heating mechanism will be presented and discussed in this study.

The results indicated that the presence of a standing high-power HF radio wave ought to influence significantly on the behavior of the bulk flow velocities of electrons and positively charged ions. At the levels of the loops of the wave, the vectors of the bulk flow velocities of the positive ions and electrons rotate with the frequency equal to the frequency of the disturbing HF radio wave. It turned out that considerable differences between modules of bulk flow velocities of electrons and positive ions take place at the levels of the wave’s loops, whereas, mentioned velocities are equal and negligible at the levels of the nodal points. As a consequence, intensive heating of the F-layer ionospheric plasma ought to arise at the levels of the loops of a wave. On the contrary, at the levels of the nodal points, the ionospheric plasma ought to stay undisturbed. The present study, revealed new details of the mechanism responsible for artificial heating of ionospheric plasma by powerful HF radio waves, pumped into the ionosphere by ground-based ionospheric heaters, have been submitted.

Biography of author(s)

Oleg V. Mingalev
Polar Geophysical Institute, Russian Academy of Sciences, Academgorodok Str. 26a,  Apatity 184209, Murmansk Region, Russia.
Mikhail N. Melnik
Polar Geophysical Institute, Russian Academy of Sciences, Academgorodok Str. 26a,  Apatity 184209, Murmansk Region, Russia.
Victor S. Mingalev
Polar Geophysical Institute, Russian Academy of Sciences, Academgorodok Str. 26a,  Apatity 184209, Murmansk Region, Russia.


Comments

Popular posts from this blog

Greening Regional Airports: A Vision for Carbon Neutral Infrastructure | Chapter 12 | Contemporary Perspective on Science, Technology and Research Vol. 3

 This study provides an overview of the energy demand of a regional airport, divided into individual time horizons. The electrification of aircraft systems raises the question of whether airports will be among the largest electricity consumers in our infrastructure in the future. Sustainability and especially emission reductions are significant challenges for airports that are currently being addressed. The Clean Sky 2 project GENESIS addresses the environmental sustainability of hybrid-electric 50-passenger aircraft systems in a life cycle perspective to support the development of a technology roadmap for the transition to sustainable and competitive electric aircraft systems. This article originates from the GENESIS research and describes various options for ground power supply at a regional airport. Potential solutions for airport infrastructure with a short (2030), medium (2040), and long (2050) time horizon are proposed. In addition to the environmental and conservation benefi...

Risk Factors for Postpartum Psychiatric Disorders. A Review of the Literature | Chapter 8 | New Visions in Medicine and Medical Science Vol. 4

  Objective: The aim of this study was to explore the risk factors for the development of postpartum psychiatric disorders through international literature. Materials and Methods: Throughout many articles in PubMed, Google scholar and PsycInfo, a great amount of recent data was gathered to identify the disorders that are most common as well as their risk factors. Results: After childbirth, most commonly women experience postpartum depression, anxiety disorders, post-traumatic stress disorder and postpartum psychosis. All the disorders have many similar risk-factors with the main one being preexisting psychiatric disorder and many similar symptoms too. Conclusions: Women after childbirth are at risk of experience many psychiatric disorders, such as postpartum distress, postpartum post traumatic stress disorder and even more rarely postpartum psychosis. It is important to provide comprehensive support to ensure the well-being of both the mother and the infant and this will b...

Alkali Element Modification of Glucose Molecules as a Method to Dissolve Cancer Cells | Chapter 12 | New Visions in Medicine and Medical Science Vol. 4

  The present study highlights about alkali element modification of glucose molecules as a method to dissolve cancer cells. The central regulation of the mechanisms governing cell proliferation has little effect on cancer cells. Cancer cells are entirely independent of the central command and divide and proliferate on their own, making it challenging to activate their response mechanism. Precisely, this is the reason why they are at risk to the health of humans and/or any biological entities. Instead of trying to reconnect the central command of the growth control mechanism to cancer cells that are already out of the range, we present a method of using the cancer cell’s own irresponsive and uncontrolled growth mechanism to their disadvantage and destroy the cancer cells. We found that this is achievable in an atomic/molecular level study of the glucose molecule, which is the primary food source used for growth and energy generation by all cells in the body, including the cancer cel...