Skip to main content

A Simulation Study of Artificial Heating of the Ionosphere by Powerful High Frequency Radio Waves | Chapter 6 | Advances and Trends in Physical Science Research Vol. 2

Results of numerical modeling of the behavior of the F-layer ionospheric plasma during the periods of action of powerful high frequency radio waves, utilized for artificial heating experiments and pumped into the ionosphere by ground-based ionospheric heaters, are presented and discussed. For obtaining the presented simulation results, two distinct mathematical models were applied. The first mathematical model is based on a numerical solution of the system of transport equations for ionospheric plasma. This mathematical model allows us to simulate large-scale disturbances of the spatial structure of the F-region ionosphere, caused by the absorbed energy of powerful high frequency radio waves. The second mathematical model is based on a numerical solution of the system of kinetic equations for ion and electron gases in the ionosphere. The latter mathematical model allows us to investigate numerically kinetic processes in ionospheric plasma, in particular, the behavior of magnetic field aligned super-small-scale irregularities in the concentration of charged particles. Moreover, this model has allowed us to establish new details of the mechanism responsible for artificial heating of ionospheric plasma by powerful high frequency radio waves, pumped into the ionosphere by ground-based ionospheric heaters. These new details of the heating mechanism will be presented and discussed in this study.

The results indicated that the presence of a standing high-power HF radio wave ought to influence significantly on the behavior of the bulk flow velocities of electrons and positively charged ions. At the levels of the loops of the wave, the vectors of the bulk flow velocities of the positive ions and electrons rotate with the frequency equal to the frequency of the disturbing HF radio wave. It turned out that considerable differences between modules of bulk flow velocities of electrons and positive ions take place at the levels of the wave’s loops, whereas, mentioned velocities are equal and negligible at the levels of the nodal points. As a consequence, intensive heating of the F-layer ionospheric plasma ought to arise at the levels of the loops of a wave. On the contrary, at the levels of the nodal points, the ionospheric plasma ought to stay undisturbed. The present study, revealed new details of the mechanism responsible for artificial heating of ionospheric plasma by powerful HF radio waves, pumped into the ionosphere by ground-based ionospheric heaters, have been submitted.

Biography of author(s)

Oleg V. Mingalev
Polar Geophysical Institute, Russian Academy of Sciences, Academgorodok Str. 26a,  Apatity 184209, Murmansk Region, Russia.
Mikhail N. Melnik
Polar Geophysical Institute, Russian Academy of Sciences, Academgorodok Str. 26a,  Apatity 184209, Murmansk Region, Russia.
Victor S. Mingalev
Polar Geophysical Institute, Russian Academy of Sciences, Academgorodok Str. 26a,  Apatity 184209, Murmansk Region, Russia.


Comments

Popular posts from this blog

A Brief Study of Middleware Technologies: Programming Applications and Management Systems | Chapter 15 | Novel Research Aspects in Mathematical and Computer Science Vol. 1

  Many platforms, services, applications, hardware, and operating systems are connected through the middleware layer. Because the middleware layer abstracts much low-level complexity and makes applications and software systems portable, it allows disparate systems to interface and function together in harmony. Middleware technologies enable software engineers to swiftly construct software systems and applications, allowing developers to focus on more important tasks. This chapter examines several types of middleware systems and discusses middleware capabilities, middleware operation, middleware's function in cloud-based systems, and the best middleware platforms to use. Middleware systems are widely utilised and can be found in practically any software system or application. Middleware programmes provide as a link between many sorts of systems and protocols. They serve as a mechanism for various systems. To successfully exchange information, it runs on a variety of operating system

A Prospective Study about Safety and Efficacy of Perioperative Lidocaine Infusion | Chapter 09 | New Horizons in Medicine and Medical Research Vol. 8

 Opioids cause clinically significant side effects such as respiratory depression, immunosuppression, muscle rigidity, negative inotropism, nausea, vomiting, hyperalgesia, urine retention, postoperative ileus, and drowsiness. Perioperative opioids are a major contributor to the United States' and other countries' opioid epidemics. Non-opioid analgesics, particularly lidocaine, are becoming more common for perioperative use as a result of this. A total of 185 adult patients were randomly assigned to one of two groups: control group I (105 patients) [fentanyl group] or group ii (80 patients) [opioid-free anaesthesia group]. Lidocaine 1.5 mg/kg bolus followed by 1.5 mg/kg/h infusion intraoperatively, and 1.5-2 mg/kg/h infusion for 2-8 hours postoperatively were given to patients in both groups at anaesthetic induction. Intraoperatively, both groups received analgesic adjuvants such as diclofenac 75 mg, paracetamol 1 gm, and mgso4 30-50 mg/kg. If the mean arterial pressure (map)

Greening Regional Airports: A Vision for Carbon Neutral Infrastructure | Chapter 12 | Contemporary Perspective on Science, Technology and Research Vol. 3

 This study provides an overview of the energy demand of a regional airport, divided into individual time horizons. The electrification of aircraft systems raises the question of whether airports will be among the largest electricity consumers in our infrastructure in the future. Sustainability and especially emission reductions are significant challenges for airports that are currently being addressed. The Clean Sky 2 project GENESIS addresses the environmental sustainability of hybrid-electric 50-passenger aircraft systems in a life cycle perspective to support the development of a technology roadmap for the transition to sustainable and competitive electric aircraft systems. This article originates from the GENESIS research and describes various options for ground power supply at a regional airport. Potential solutions for airport infrastructure with a short (2030), medium (2040), and long (2050) time horizon are proposed. In addition to the environmental and conservation benefits,