Skip to main content

Effects of Processing on Proximate Composition of Hibiscus rosa-sinensis Leaf | Chapter 14 | Recent Advances in Biological Research Vol. 3

Leaves of Hibiscus rosa-sinensis are processed using different methods depending on the intended application. Using three different processing methods, we investigated the effects of processing on the proximate constitution of the leaf. Result demonstrated that the fresh raw leaf had moisture content of 82.30 ± 0.42%, which were significantly (p<0.05) reduced by drying but not extraction and blanching. The protein content of the raw leaf was low (1.80 ± 0.10%). Extraction and blanching reduced the protein content, whereas drying increased the protein content significantly (p < 0.05) for raw dried leaf powder and blanched leaf products. The raw leaf contained vitamins A, B2, C and E, which were significantly reduced by extraction and blanching, but were concentrated by drying. Anti-nutrient contents of the raw leaf were low and were reduced to negligible levels by the processing techniques employed. Comparing the nutrient and chemical constituents with recommended dietary allowance (RDA) values, we found that the leaves contain an appreciable amount of nutrients, minerals, vitamins, proteins and phytochemicals and low degree of toxicants. These findings suggested that the treatment method employed in processing this leaf affected the proximate composition, and this should be considered in utilization of this leaf (and other leaves) product in various food and pharmaceutical formulations. Various heat processing techniques applied during the preparation of the processed products from Hibiscus rosa-sinensis leaves, caused adverse effects on the chemical composition of the processed leaf products. This was evident especially for the vitamins and minerals constitution of the processed products. More so, blanching and drying caused a significant reduction in the nutrients and anti-nutrient composition of the formulated samples. While the best processed samples were the dried powdered products, especially the RDLP, whereas the worst processed samples were the extracts, notably B2LE. It is recommended that other processing techniques such as freezing, solar and spray drying and ethanol extraction can also be applied in order to determine their effects on nutrient retention and anti-nutrient reduction on the plant leaves and compare it with the results of this study.

Author  Details:

Ifeyinwa Mirabel Eze
Department of Food Science and Technology, University of Nigeria, Nsukka 410001, Nigeria.

Daniel Don Nwibo
Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, Institute of Medical Mycology, Graduate School of Medicine, Teikyo University, 359 Otsuka, Hachioji, Tokyo 192-0395, Japan and Department of Chemistry, University of Nigeria, Nsukka 410001, Nigeria.

View Volume: https://doi.org/10.9734/bpi/rabr/v3

Comments

Popular posts from this blog

Greening Regional Airports: A Vision for Carbon Neutral Infrastructure | Chapter 12 | Contemporary Perspective on Science, Technology and Research Vol. 3

 This study provides an overview of the energy demand of a regional airport, divided into individual time horizons. The electrification of aircraft systems raises the question of whether airports will be among the largest electricity consumers in our infrastructure in the future. Sustainability and especially emission reductions are significant challenges for airports that are currently being addressed. The Clean Sky 2 project GENESIS addresses the environmental sustainability of hybrid-electric 50-passenger aircraft systems in a life cycle perspective to support the development of a technology roadmap for the transition to sustainable and competitive electric aircraft systems. This article originates from the GENESIS research and describes various options for ground power supply at a regional airport. Potential solutions for airport infrastructure with a short (2030), medium (2040), and long (2050) time horizon are proposed. In addition to the environmental and conservation benefi...

Occipital Dermal Sinus Tract Causing Craniospinal Infection: A Review | Chapter 13 | New Visions in Medicine and Medical Science Vol. 4

  Dermal sinus is a rare congenital condition characterized by a pathological tract connecting the skin to deeper tissues of the central nervous system, potentially leading to severe infectious complications. It arises from a failure in the separation of ectodermal layers during early gestation. Diagnosing dermal sinus tract in newborns requires a careful physical examination, focusing on midline dimples in the occipital region associated with cutaneous abnormalities like hairy nevus or hyperpigmentation. The presence of drainage, abnormal hair distribution, or localized swelling may indicate a sinus tract. Regular examination for dimples or sinuses is recommended for infants and children with recurrent meningitis or infections. Early detection is crucial to prevent severe complications like meningitis, with Staphylococcus aureus being a common causative organism. Neuroradiological studies, including computed tomography (CT) scan and magnetic resonance imaging (MRI), with histopath...

Alkali Element Modification of Glucose Molecules as a Method to Dissolve Cancer Cells | Chapter 12 | New Visions in Medicine and Medical Science Vol. 4

  The present study highlights about alkali element modification of glucose molecules as a method to dissolve cancer cells. The central regulation of the mechanisms governing cell proliferation has little effect on cancer cells. Cancer cells are entirely independent of the central command and divide and proliferate on their own, making it challenging to activate their response mechanism. Precisely, this is the reason why they are at risk to the health of humans and/or any biological entities. Instead of trying to reconnect the central command of the growth control mechanism to cancer cells that are already out of the range, we present a method of using the cancer cell’s own irresponsive and uncontrolled growth mechanism to their disadvantage and destroy the cancer cells. We found that this is achievable in an atomic/molecular level study of the glucose molecule, which is the primary food source used for growth and energy generation by all cells in the body, including the cancer cel...