Skip to main content

Electrochemical, Spectrochemical and Quantum Chemical Studies on Dimedone as Corrosion Inhibitor for Copper in Acetonitrile | Chapter 09 | Advances in Applied Science and Technology Vol. 3

A number of techniques have been applied in the investigation of inhibition abilities of dimedone (DMD) for copper in acetonitrile at 25°C. By potentiodynamic polarization and electrochemical impedance spectroscopy (EIS), the corrosion resistance was found to be increased with inhibitor concentration up to 93.68% inhibition efficiency at 3.00 mM, indicating that DMD molecules can cumulatively adsorb on the copper surface and finally form a protective film on copper-solution interface. This is also supported by the decreasing of copper oxidation in cyclic voltammogram. Polarization curves revealed that DMD is of mixed type inhibitor.

The adsorption of DMD on copper surface obeys the Langmuir isotherm and the adsorption mechanism is of physisorption type. The values of standard energy of adsorption (∆Goads) were found to be in good agreement for both polarization and impedance techniques to be -8.17 and -8.43 kJmol-1 respectively. Fourier Transform Infrared spectroscopy (FT-IR) confirmed the interaction of copper with oxygen on DMD. The mole ratio method suggested that the complexation ratio of copper-DMD is 1:2. Scanning electron microscopy (SEM) of copper surface after immersion in DMD solution indicates the presence of a protective layer on the electrode surface. The frontier molecular orbital energy EHOMO (highest occupied molecular orbital), ELUMO (lowest unoccupied molecular orbital) and the Mulliken charge distribution obtained from Quantum chemical calculations revealed (∆E) for DMD 0.2091 hartree, reflecting strong adsorption of the molecules on copper surface. The enhanced corrosion inhibition is possibly due to the compact film structure blocking electron transfer at the electrode surface. This provides a typical example in understanding the system as well as interpretation of the data by both traditional and advanced technology to support the newly coming technology which would make science much more fruitful.

Author(s) Details

Pipat Chooto
Analytical Chemistry Division, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90112, Thailand.

Sontaya Manaboot
Analytical Chemistry Division, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90112, Thailand.

View Volume: https://doi.org/10.9734/bpi/aast/v3

Comments

Popular posts from this blog

Greening Regional Airports: A Vision for Carbon Neutral Infrastructure | Chapter 12 | Contemporary Perspective on Science, Technology and Research Vol. 3

 This study provides an overview of the energy demand of a regional airport, divided into individual time horizons. The electrification of aircraft systems raises the question of whether airports will be among the largest electricity consumers in our infrastructure in the future. Sustainability and especially emission reductions are significant challenges for airports that are currently being addressed. The Clean Sky 2 project GENESIS addresses the environmental sustainability of hybrid-electric 50-passenger aircraft systems in a life cycle perspective to support the development of a technology roadmap for the transition to sustainable and competitive electric aircraft systems. This article originates from the GENESIS research and describes various options for ground power supply at a regional airport. Potential solutions for airport infrastructure with a short (2030), medium (2040), and long (2050) time horizon are proposed. In addition to the environmental and conservation benefi...

Risk Factors for Postpartum Psychiatric Disorders. A Review of the Literature | Chapter 8 | New Visions in Medicine and Medical Science Vol. 4

  Objective: The aim of this study was to explore the risk factors for the development of postpartum psychiatric disorders through international literature. Materials and Methods: Throughout many articles in PubMed, Google scholar and PsycInfo, a great amount of recent data was gathered to identify the disorders that are most common as well as their risk factors. Results: After childbirth, most commonly women experience postpartum depression, anxiety disorders, post-traumatic stress disorder and postpartum psychosis. All the disorders have many similar risk-factors with the main one being preexisting psychiatric disorder and many similar symptoms too. Conclusions: Women after childbirth are at risk of experience many psychiatric disorders, such as postpartum distress, postpartum post traumatic stress disorder and even more rarely postpartum psychosis. It is important to provide comprehensive support to ensure the well-being of both the mother and the infant and this will b...

Alkali Element Modification of Glucose Molecules as a Method to Dissolve Cancer Cells | Chapter 12 | New Visions in Medicine and Medical Science Vol. 4

  The present study highlights about alkali element modification of glucose molecules as a method to dissolve cancer cells. The central regulation of the mechanisms governing cell proliferation has little effect on cancer cells. Cancer cells are entirely independent of the central command and divide and proliferate on their own, making it challenging to activate their response mechanism. Precisely, this is the reason why they are at risk to the health of humans and/or any biological entities. Instead of trying to reconnect the central command of the growth control mechanism to cancer cells that are already out of the range, we present a method of using the cancer cell’s own irresponsive and uncontrolled growth mechanism to their disadvantage and destroy the cancer cells. We found that this is achievable in an atomic/molecular level study of the glucose molecule, which is the primary food source used for growth and energy generation by all cells in the body, including the cancer cel...