Skip to main content

Negative Adiabatic Lapse Rate of Water: Result of Negative Compressibility | Chapter 06 | Advances and Trends in Physical Science Research Vol. 1

When the pressure of fluid changes without heat addition, the temperature of the fluid changes; the rate at which the temperature changes with pressure is called the adiabatic lapse rate. According to thermodynamic equations, the adiabatic lapse rate is positive if the thermal expansion coefficient is positive and negative if this coefficient is negative. The adiabatic lapse rate of water is the rate at which its temperature changes with pressure at constant entropy S, and salinity. Experiments show, however, that the adiabatic lapse rate is also positive for substances with negative thermal expansion, although for water it is negative when it has negative thermal expansion. The present paper develops a theory showing that the adiabatic lapse rate must always be positive, but is negative for water because it has negative compressibility in that temperature-pressure region. Numerous substances with negative compressibility have already been identified. The result shows that the traditional thermodynamic equations cannot be used to describe the adiabatic compression of substances because they are derived from the equation which describes heat exchange. The traditional equations predict that substances with negative thermal expansion absorb heat under compression, while numerous experiments show that they express heat. Result also shows that water absorbs heat when it has negative thermal expansion. As many substances with negative compressibility have recently been found, this explanation appears to be plausible. Therefore, the study suggests precise experiments in this low-pressure region. Taking the salinity of water into account does not change the results of the theory.

Biography of author(s)

Igor Stepanov
Institute of Science and Innovative Technologies, Liepaja University, Liela 14, Liepaja, Latvia, LV-3401, Latvia.


View Volume: https://doi.org/10.9734/BPI/atpsr/ed1

Comments

Popular posts from this blog

Greening Regional Airports: A Vision for Carbon Neutral Infrastructure | Chapter 12 | Contemporary Perspective on Science, Technology and Research Vol. 3

 This study provides an overview of the energy demand of a regional airport, divided into individual time horizons. The electrification of aircraft systems raises the question of whether airports will be among the largest electricity consumers in our infrastructure in the future. Sustainability and especially emission reductions are significant challenges for airports that are currently being addressed. The Clean Sky 2 project GENESIS addresses the environmental sustainability of hybrid-electric 50-passenger aircraft systems in a life cycle perspective to support the development of a technology roadmap for the transition to sustainable and competitive electric aircraft systems. This article originates from the GENESIS research and describes various options for ground power supply at a regional airport. Potential solutions for airport infrastructure with a short (2030), medium (2040), and long (2050) time horizon are proposed. In addition to the environmental and conservation benefi...

Occipital Dermal Sinus Tract Causing Craniospinal Infection: A Review | Chapter 13 | New Visions in Medicine and Medical Science Vol. 4

  Dermal sinus is a rare congenital condition characterized by a pathological tract connecting the skin to deeper tissues of the central nervous system, potentially leading to severe infectious complications. It arises from a failure in the separation of ectodermal layers during early gestation. Diagnosing dermal sinus tract in newborns requires a careful physical examination, focusing on midline dimples in the occipital region associated with cutaneous abnormalities like hairy nevus or hyperpigmentation. The presence of drainage, abnormal hair distribution, or localized swelling may indicate a sinus tract. Regular examination for dimples or sinuses is recommended for infants and children with recurrent meningitis or infections. Early detection is crucial to prevent severe complications like meningitis, with Staphylococcus aureus being a common causative organism. Neuroradiological studies, including computed tomography (CT) scan and magnetic resonance imaging (MRI), with histopath...

Alkali Element Modification of Glucose Molecules as a Method to Dissolve Cancer Cells | Chapter 12 | New Visions in Medicine and Medical Science Vol. 4

  The present study highlights about alkali element modification of glucose molecules as a method to dissolve cancer cells. The central regulation of the mechanisms governing cell proliferation has little effect on cancer cells. Cancer cells are entirely independent of the central command and divide and proliferate on their own, making it challenging to activate their response mechanism. Precisely, this is the reason why they are at risk to the health of humans and/or any biological entities. Instead of trying to reconnect the central command of the growth control mechanism to cancer cells that are already out of the range, we present a method of using the cancer cell’s own irresponsive and uncontrolled growth mechanism to their disadvantage and destroy the cancer cells. We found that this is achievable in an atomic/molecular level study of the glucose molecule, which is the primary food source used for growth and energy generation by all cells in the body, including the cancer cel...