Skip to main content

Molecular Differentiation of Five Quinoa (Chenopodium quinoa Willd.) Genotypes Using Inter-simple Sequence Repeat (ISSR) Markers | Chapter 09 | Advances and Trends in Biotechnology and Genetics Vol. 1

Knowledge of genetic diversity is one of the important tools used for genetic management of quinoa accessions for plant breeding. This research aimed to molecularly characterize five quinoa genotypes using ISSR markers to reveal genetic polymorphism and identify unique markers for each genotype. Analysis of inter-simple sequence repeats (ISSR) revealed that 10 ISSR primers produced 53 amplicons, out of them 33 were polymorphic and the average percentage of polymorphism was 61.83%. The number of amplicons per primer ranged from 3 (HB-13, HB-10, HB-8 and 17898A) to 10 (HB-15) with an average of 5.3 fragments/primer across the different quinoa genotypes. Data showed a total number of unique ISSR markers of 24; eleven of them were positive and 13 were negative. Using ISSR analysis, we were able to identify some unique bands associated with quinoa genotypes. The genetic similarity ranged from 49% (between Ollague and each of QL-3 and Chipaya) to 76% (between CICA-17 and CO-407). The results indicated that all the five quinoa genotypes differ from each other at the DNA level where the average of genetic similarity (GS) between them was about 59%. The dendrogram separated the quinoa genotypes into two clusters; the first cluster included two genotypes (QL-3 and Chipaya). The second cluster was divided into two groups; the first group included two genotypes (CICA-17 and CO-407) and the second group included only one genotype (Ollague). Our results indicated that ISSR technique is useful in the establishment of the genetic fingerprinting and estimation of genetic relationships among quinoa genotypes. Also, this technique could detect enough polymorphism in the studied quinoa genotypes to distinguish each genotype from the others. Furthermore, the use of these results in the future is important for quinoa germplasm management and improvement as well as for the selection strategies of parental lines that facilitate the prediction of crosses in order to produce hybrids with higher performance. Using ISSR analysis, we were able to identify unique bands associated with quinoa genotypes. These bands might also be used in breeding programs for differentiating among Chinopodium quinoa varieties.

Author(s) Details

A. M. M. Al-Naggar
Department of Agronomy, Faculty of Agriculture, Cairo University, Egypt.

R. M. Abd El-Salam
Department of Agronomy, Faculty of Agriculture, Cairo University, Egypt.

A. E. E. Badran
Plant Breeding Unit, Department of Genetic Resources, Desert Research Center, Cairo, Egypt.

Mai M. A. El-Moghazi
Plant Breeding Unit, Department of Genetic Resources, Desert Research Center, Cairo, Egypt.

Comments

Popular posts from this blog

Greening Regional Airports: A Vision for Carbon Neutral Infrastructure | Chapter 12 | Contemporary Perspective on Science, Technology and Research Vol. 3

 This study provides an overview of the energy demand of a regional airport, divided into individual time horizons. The electrification of aircraft systems raises the question of whether airports will be among the largest electricity consumers in our infrastructure in the future. Sustainability and especially emission reductions are significant challenges for airports that are currently being addressed. The Clean Sky 2 project GENESIS addresses the environmental sustainability of hybrid-electric 50-passenger aircraft systems in a life cycle perspective to support the development of a technology roadmap for the transition to sustainable and competitive electric aircraft systems. This article originates from the GENESIS research and describes various options for ground power supply at a regional airport. Potential solutions for airport infrastructure with a short (2030), medium (2040), and long (2050) time horizon are proposed. In addition to the environmental and conservation benefi...

Risk Factors for Postpartum Psychiatric Disorders. A Review of the Literature | Chapter 8 | New Visions in Medicine and Medical Science Vol. 4

  Objective: The aim of this study was to explore the risk factors for the development of postpartum psychiatric disorders through international literature. Materials and Methods: Throughout many articles in PubMed, Google scholar and PsycInfo, a great amount of recent data was gathered to identify the disorders that are most common as well as their risk factors. Results: After childbirth, most commonly women experience postpartum depression, anxiety disorders, post-traumatic stress disorder and postpartum psychosis. All the disorders have many similar risk-factors with the main one being preexisting psychiatric disorder and many similar symptoms too. Conclusions: Women after childbirth are at risk of experience many psychiatric disorders, such as postpartum distress, postpartum post traumatic stress disorder and even more rarely postpartum psychosis. It is important to provide comprehensive support to ensure the well-being of both the mother and the infant and this will b...

Alkali Element Modification of Glucose Molecules as a Method to Dissolve Cancer Cells | Chapter 12 | New Visions in Medicine and Medical Science Vol. 4

  The present study highlights about alkali element modification of glucose molecules as a method to dissolve cancer cells. The central regulation of the mechanisms governing cell proliferation has little effect on cancer cells. Cancer cells are entirely independent of the central command and divide and proliferate on their own, making it challenging to activate their response mechanism. Precisely, this is the reason why they are at risk to the health of humans and/or any biological entities. Instead of trying to reconnect the central command of the growth control mechanism to cancer cells that are already out of the range, we present a method of using the cancer cell’s own irresponsive and uncontrolled growth mechanism to their disadvantage and destroy the cancer cells. We found that this is achievable in an atomic/molecular level study of the glucose molecule, which is the primary food source used for growth and energy generation by all cells in the body, including the cancer cel...