Skip to main content

Single Subunit RNA Polymerases: An Insight into Their Active Sites and Catalytic Mechanism | Chapter 01 | Advances and Trends in Biotechnology and Genetics Vol. 1

Aim: To analyze various single subunit DNA dependent RNA polymerases and identify conserved motifs, active site regions among them and propose a plausible mechanism of action for these polymerases using the T7 RNA polymerase as a model system.

Study Design: Bioinformatics, Biochemical, Site-directed mutagenesis and X-ray crystallographic data were analyzed.

Place and Duration of Study: Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai – 625 021, India, from 2010 to 2013.

Methodology: The advanced version of Clustal Omega was used for protein sequence analysis of various SSU DNA dependent RNA polymerases from viruses, mitochondria and chloroplasts. Along with the conserved motifs identified by the bioinformatics analysis and with the data obtained by X-ray crystallographic, biochemical and site-directed mutagenesis (SDM) were also used to confirm the possible amino acids involved in the active sites and catalysis of these RNA polymerases.

Results: Multiple sequence analyses of various single subunit (SSU) DNA dependent RNA polymerases from different sources showed only a few highly conserved motifs among them, except chloroplast RNA polymerases where a large number of highly conserved motifs were found. Possible catalytic regions in all these polymerases consist of a highly conserved amino acid K and a ‘gatekeeper’ YG pair. In addition to, these polymerases also use an invariant R at the -4 position from the YG pair and an invariant S/T, adjacent to the YG pair. Furthermore, two highly conserved Ds are implicated in the metal-binding site and thus might participate in the catalytic process. The YG pair appears to be specific for DNA templates as it is not reported in RNA dependent RNA polymerases.

Conclusion: The highly conserved amino acid K, the ‘gatekeeper’ YG pair and an invariant R which are reported in all DNA polymerases, are also found in these DNA dependent RNA polymerases. Therefore, these RNA polymerases might be using the same catalytic mechanism as DNA polymerases. The catalytic amino acid K could act as the proton abstractor and generate the necessary nucleophile at the 3’-OH and the YG pair, R and the S/T might involve in the template binding and selection of nucleoside triphosphates (NTPs) for polymerization reactions. The two highly conserved Ds could act as the ‘NTP charge shielder’ and orient the alpha phosphate of incoming NTPs for the reaction at the 3’-OH growing end.

Author(s) Details

Dr. Peramachi Palanivelu
Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai –625 021, India (Retd.).


Comments

Popular posts from this blog

Greening Regional Airports: A Vision for Carbon Neutral Infrastructure | Chapter 12 | Contemporary Perspective on Science, Technology and Research Vol. 3

 This study provides an overview of the energy demand of a regional airport, divided into individual time horizons. The electrification of aircraft systems raises the question of whether airports will be among the largest electricity consumers in our infrastructure in the future. Sustainability and especially emission reductions are significant challenges for airports that are currently being addressed. The Clean Sky 2 project GENESIS addresses the environmental sustainability of hybrid-electric 50-passenger aircraft systems in a life cycle perspective to support the development of a technology roadmap for the transition to sustainable and competitive electric aircraft systems. This article originates from the GENESIS research and describes various options for ground power supply at a regional airport. Potential solutions for airport infrastructure with a short (2030), medium (2040), and long (2050) time horizon are proposed. In addition to the environmental and conservation benefi...

Risk Factors for Postpartum Psychiatric Disorders. A Review of the Literature | Chapter 8 | New Visions in Medicine and Medical Science Vol. 4

  Objective: The aim of this study was to explore the risk factors for the development of postpartum psychiatric disorders through international literature. Materials and Methods: Throughout many articles in PubMed, Google scholar and PsycInfo, a great amount of recent data was gathered to identify the disorders that are most common as well as their risk factors. Results: After childbirth, most commonly women experience postpartum depression, anxiety disorders, post-traumatic stress disorder and postpartum psychosis. All the disorders have many similar risk-factors with the main one being preexisting psychiatric disorder and many similar symptoms too. Conclusions: Women after childbirth are at risk of experience many psychiatric disorders, such as postpartum distress, postpartum post traumatic stress disorder and even more rarely postpartum psychosis. It is important to provide comprehensive support to ensure the well-being of both the mother and the infant and this will b...

Alkali Element Modification of Glucose Molecules as a Method to Dissolve Cancer Cells | Chapter 12 | New Visions in Medicine and Medical Science Vol. 4

  The present study highlights about alkali element modification of glucose molecules as a method to dissolve cancer cells. The central regulation of the mechanisms governing cell proliferation has little effect on cancer cells. Cancer cells are entirely independent of the central command and divide and proliferate on their own, making it challenging to activate their response mechanism. Precisely, this is the reason why they are at risk to the health of humans and/or any biological entities. Instead of trying to reconnect the central command of the growth control mechanism to cancer cells that are already out of the range, we present a method of using the cancer cell’s own irresponsive and uncontrolled growth mechanism to their disadvantage and destroy the cancer cells. We found that this is achievable in an atomic/molecular level study of the glucose molecule, which is the primary food source used for growth and energy generation by all cells in the body, including the cancer cel...