Skip to main content

Structure, Properties, and Drug-likeness of Pharmaceuticals That Inhibit Ebola Virus Disease (EVD) Proliferation | Chapter 01 | Current Trends in Disease and Health Vol. 1

Introduction: The Ebola virus is one of known viruses within the genus Ebolavirus that are generally considered to cause Ebola virus disease (EBV) in humans. Some investigators have determined that Ebola virus outbreaks have an increased likelihood to occur when temperatures are lower and humidity is higher. The determination and evaluation of pharmacokinetic and pharmacodynamics properties of drugs potentially useful for treatment of Ebola virus disease is a very important consideration for discovery of new pharmaceuticals.


Aims:
To present the molecular structures of compounds that has been shown to inhibit the proliferation of Ebola virus. To elucidate the molecular properties of these virus inhibiting compounds.

Study Design: The molecular properties of virus inhibiting compounds are elucidated and compiled. Pattern recognition methods and statistical analysis are applied to determine optimal properties of this group of compounds.

Place and Duration of Study: Chemistry Department, Durham Science Center, University of Nebraska, Omaha NE. between December 2015 and February 2016.

Methodology: A total of 60 compounds were identified as inhibiting the virus Ebola. The molecular properties such as Log P, molecular weight, and 7 other descriptors were elucidated utilizing heuristic methods. Structures are compared by applying classification methods with statistical tests to determine trends, underlying relationships, and pattern recognition.

Results: For 60 compounds identified the averages determined: for Log P (3.51), polar surface area (89.45 Angstroms2), molecular weight (432.6), molecular volume (393.96 Angstroms3), and number of rotatable bonds (7). Molecular weight showed a strong positive correlation to number of oxygen and nitrogen atoms, number of rotatable bonds, and molecular volume. K-means clustering indicated seven clusters divided according to highest similarity of members in the cluster. Ranges found: formula weights (157.1 to 822.94), Log P (-2.24 to 8.93), polar surface area (6.48 to 267.04 A2), and number of atoms (11 to 58). Multiple regression analysis produced an algorithm to predict similar compounds.

Conclusion: The formula weights and Log P values of Ebola virus inhibitors show a broad range in numerical values. Consistency in properties was identified by statistical analysis with grouping for similarity by K-means pattern recognition. Multiple regression analysis enables prediction of similar compounds as drug candidates. Only 29 compounds showed zero violations of rule of 5, an indication of favorable drug-likeness. These compounds are highly varied in structures and properties.

Author(s) Details

Dr. Ronald Bartzatt
University of Nebraska, Durham Science Center, 6001 Dodge Street, Omaha, Nebraska 68182, USA.

View Volume: https://doi.org/10.9734/bpi/ctdah/v1

Comments

Popular posts from this blog

Consensus Summit: Lipids and Cardiovascular Health in the Nigerian Population | Chapter 09 | Current Trends in Food Science Vol. 1

Aims: To issue a consensus statement on Lipids and Cardiovascular Health and the impact of their interrelationship in Nigerian Population. Study Design: Experts from a range of relevant disciplines, deliberated on different aspects of Lipids and Cardiovascular Health in the Nigerian Population at a Summit. Place and Duration of Study: The Summit was held in April 2016 at the Nigerian Institute of Medical Research. Methodology: Presentations were made on central themes after which expert participants split into four different groups to consider the questions relevant to different sub themes of the title. Consensus was arrived at, from presentations of groups at plenary. Conclusion: With the increase in the prevalence of NCDs, especially Cardiovascular Disease in Nigeria, and the documented evidence of deleterious effects of lipids, the expert panel called for an urgent need to advocate for the general public and health professionals to make heart-friendly

A Review on Gongronema latifolium, an Extremely Useful Plant with Great Prospects | Chapter 11 | Recent Advances in Biological Research Vol. 3

Gongronema latifolium is a plant that has a wide range of nutritional and ethnomedical uses in different tropical African communities. Scientific reports on the chemical composition and bioactivity (anti-inflammatory, antimicrobial, antidiabetic, antioxidant, anticancer and allelopathic properties) of the plant material by different authors are discussed in this review. Future prospects of the plant extracts in the areas of herbal formulations, food preservation, alcoholic fermentation and beer production, drug discovery and allelopathy are also highlighted. Author   Details: Olugbenga Morebise Faculty of Basic Medical Sciences, All Saints University School of Medicine, Roseau, Commonwealth of Dominica. Read full article: http://bp.bookpi.org/index.php/bpi/catalog/view/50/403/433-1 View Volume: https://doi.org/10.9734/bpi/rabr/v3

An Overview of Ultrasonic Technology and Its Applications in Food Processing, Preservation and Quality Control | Chapter 03 | Current Research in Science and Technology Vol. 3

Ultrasound is one of the emerging technologies that were developed to minimize processing, maximize quality and ensure the safety of food products. In recent years, ultrasound technology has been used as an alternative processing option to conventional thermal approaches. Although Ultrasonication methods have been used for years in research and diagnostics, major advances have been made in the last decade. The applications for which high power ultrasound can be used range from existing processes that are enhanced by the retrofitting of high power ultrasonic technology, to the development of processes up to now not possible with conventional energy sources. The present paper reviews the generation, principle mechanism, properties, process parameters, applications, merits and demerits and future trends of the ultrasound technology in the food processing. Author(s) Details Er. Bogala Madhu Department of Processing and Food Engineering, College of Technology and Engineering, MP