Skip to main content

Self Potential Anomalies and their Minerological Implications, A Case Study of Some Parts of Southern Umuahia, Abia State, Nigeria | Chapter 06 | Current Perspectives to Environment and Climate Change Vol. 2

Self Potential, an electrical geophysical method is chiefly used in mineral prospecting. Vertical and lateral variations in the conductivity of earth materials produce variations in the potential distribution as measured on the surface thereby giving information of the sub-surface. The SP method involves the measurement of the differences in natural ground potential between any two points on the ground surface which ranges from less than a millivolt to over ten volts. This method has some mineralogical implications in that it has been used in massive base metal exploration to detect the presence of massive ore bodies. It has also been extended to groundwater and geothermal investigations, environmental and engineering applications to; map seepage flow associated with dams, in geological mapping and in delineation of shear zones and near-surface faults. This work seeks to x-ray the principles of SP survey with evidence from the survey carried out in some parts of Southern Umuahia, Abia State, Nigeria. Seven locations where SP survey was carried out showed a negative anomaly of -2mV to -600mV and a positive anomaly of 5mV to 277mV distributed within the study area. It was observed that the potential anomalies are due to some conductive minerals like graphite and sulphide ore bodies. The Iso-potential contour map of the study area was made with an interval of 50mV which reveals the mineralogical trend of sulphide and graphite ore bodies.

Author(s) Details

Azunna, Daniel. E.
Department of Physics, Clifford University, Owerrinta, Abia State, Nigeria.

Chukwu, Godwill. U.
Department of Physics, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria.

Comments

Popular posts from this blog

Greening Regional Airports: A Vision for Carbon Neutral Infrastructure | Chapter 12 | Contemporary Perspective on Science, Technology and Research Vol. 3

 This study provides an overview of the energy demand of a regional airport, divided into individual time horizons. The electrification of aircraft systems raises the question of whether airports will be among the largest electricity consumers in our infrastructure in the future. Sustainability and especially emission reductions are significant challenges for airports that are currently being addressed. The Clean Sky 2 project GENESIS addresses the environmental sustainability of hybrid-electric 50-passenger aircraft systems in a life cycle perspective to support the development of a technology roadmap for the transition to sustainable and competitive electric aircraft systems. This article originates from the GENESIS research and describes various options for ground power supply at a regional airport. Potential solutions for airport infrastructure with a short (2030), medium (2040), and long (2050) time horizon are proposed. In addition to the environmental and conservation benefi...

Occipital Dermal Sinus Tract Causing Craniospinal Infection: A Review | Chapter 13 | New Visions in Medicine and Medical Science Vol. 4

  Dermal sinus is a rare congenital condition characterized by a pathological tract connecting the skin to deeper tissues of the central nervous system, potentially leading to severe infectious complications. It arises from a failure in the separation of ectodermal layers during early gestation. Diagnosing dermal sinus tract in newborns requires a careful physical examination, focusing on midline dimples in the occipital region associated with cutaneous abnormalities like hairy nevus or hyperpigmentation. The presence of drainage, abnormal hair distribution, or localized swelling may indicate a sinus tract. Regular examination for dimples or sinuses is recommended for infants and children with recurrent meningitis or infections. Early detection is crucial to prevent severe complications like meningitis, with Staphylococcus aureus being a common causative organism. Neuroradiological studies, including computed tomography (CT) scan and magnetic resonance imaging (MRI), with histopath...

Alkali Element Modification of Glucose Molecules as a Method to Dissolve Cancer Cells | Chapter 12 | New Visions in Medicine and Medical Science Vol. 4

  The present study highlights about alkali element modification of glucose molecules as a method to dissolve cancer cells. The central regulation of the mechanisms governing cell proliferation has little effect on cancer cells. Cancer cells are entirely independent of the central command and divide and proliferate on their own, making it challenging to activate their response mechanism. Precisely, this is the reason why they are at risk to the health of humans and/or any biological entities. Instead of trying to reconnect the central command of the growth control mechanism to cancer cells that are already out of the range, we present a method of using the cancer cell’s own irresponsive and uncontrolled growth mechanism to their disadvantage and destroy the cancer cells. We found that this is achievable in an atomic/molecular level study of the glucose molecule, which is the primary food source used for growth and energy generation by all cells in the body, including the cancer cel...