Skip to main content

Atypical Manifestation in Infection by Methicillin-Resistant Staphylococcus aureus Carrier SCCmec IV and Panton-Valentine Leukocidin-Producer in Experimental Sepsis Model | Chapter 08 | Theory and Applications of Microbiology and Biotechnology Vol. 1

Staphylococcus aureus is considered an infectious agent of great clinical importance, responsible for many different types of infection. Strains of methicillin-resistant Staphylococcus aureus (MRSA), Panton-valentine leukocidin producers, are considered more invasive, presenting clinical sequelae related to abscesses and infection in skin and soft tissues. The use of invasive techniques in hospital environment, such as the introduction of intravascular catheter in immunocompromised patients, has contributed to this microorganism spreading through the bloodstream, causing bacteremia, necrotizing pneumonia and increasing the number of septic patients in intensive care units with high mortality. In this report, atypical infections in Swiss mice using experimental model of sepsis was presented.

Author(s) Details

Giorgio Silva-Santana
Department of Pathology, School of Medicine, Fluminense Federal University, Rio de Janeiro, Brazil and Laboratory Academic Rodolfo Albino, Fluminense Federal University, Rio de Janeiro, Brazil.

Kátia C. Lenzi-Almeida
Department of Pathology, School of Medicine, Fluminense Federal University, Rio de Janeiro, Brazil and  Environmental Science and Conservation Department, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

Vânia G. S. Lopes
Department of Pathology, School of Medicine, Fluminense Federal University, Rio de Janeiro, Brazil.

Fábio Aguiar-Alves
Department of Pathology, School of Medicine, Fluminense Federal University, Rio de Janeiro, Brazil and Laboratory Academic Rodolfo Albino, Fluminense Federal University, Rio de Janeiro, Brazil.

Comments

Popular posts from this blog

Greening Regional Airports: A Vision for Carbon Neutral Infrastructure | Chapter 12 | Contemporary Perspective on Science, Technology and Research Vol. 3

 This study provides an overview of the energy demand of a regional airport, divided into individual time horizons. The electrification of aircraft systems raises the question of whether airports will be among the largest electricity consumers in our infrastructure in the future. Sustainability and especially emission reductions are significant challenges for airports that are currently being addressed. The Clean Sky 2 project GENESIS addresses the environmental sustainability of hybrid-electric 50-passenger aircraft systems in a life cycle perspective to support the development of a technology roadmap for the transition to sustainable and competitive electric aircraft systems. This article originates from the GENESIS research and describes various options for ground power supply at a regional airport. Potential solutions for airport infrastructure with a short (2030), medium (2040), and long (2050) time horizon are proposed. In addition to the environmental and conservation benefi...

Occipital Dermal Sinus Tract Causing Craniospinal Infection: A Review | Chapter 13 | New Visions in Medicine and Medical Science Vol. 4

  Dermal sinus is a rare congenital condition characterized by a pathological tract connecting the skin to deeper tissues of the central nervous system, potentially leading to severe infectious complications. It arises from a failure in the separation of ectodermal layers during early gestation. Diagnosing dermal sinus tract in newborns requires a careful physical examination, focusing on midline dimples in the occipital region associated with cutaneous abnormalities like hairy nevus or hyperpigmentation. The presence of drainage, abnormal hair distribution, or localized swelling may indicate a sinus tract. Regular examination for dimples or sinuses is recommended for infants and children with recurrent meningitis or infections. Early detection is crucial to prevent severe complications like meningitis, with Staphylococcus aureus being a common causative organism. Neuroradiological studies, including computed tomography (CT) scan and magnetic resonance imaging (MRI), with histopath...

Alkali Element Modification of Glucose Molecules as a Method to Dissolve Cancer Cells | Chapter 12 | New Visions in Medicine and Medical Science Vol. 4

  The present study highlights about alkali element modification of glucose molecules as a method to dissolve cancer cells. The central regulation of the mechanisms governing cell proliferation has little effect on cancer cells. Cancer cells are entirely independent of the central command and divide and proliferate on their own, making it challenging to activate their response mechanism. Precisely, this is the reason why they are at risk to the health of humans and/or any biological entities. Instead of trying to reconnect the central command of the growth control mechanism to cancer cells that are already out of the range, we present a method of using the cancer cell’s own irresponsive and uncontrolled growth mechanism to their disadvantage and destroy the cancer cells. We found that this is achievable in an atomic/molecular level study of the glucose molecule, which is the primary food source used for growth and energy generation by all cells in the body, including the cancer cel...