Skip to main content

Emotions Felt toward a Brand and Customer Loyalty: Study of Mobile Phone Brands | Chapter 11 | Emerging Issues and Development in Economics and Trade Vol. 2

Recently, a firm that wants to conquer and keep its customers is expected to invest in the emotional value of its brand. Thus, the fact of eliciting the emotions of customers has become a challenge to develop a close emotional and behavioral resistance to change. This research work aims to study the role of emotions felt toward a brand in the formation and preservation of the relationship between the customer and the brand. A conceptual model is developed to examine the relationships between emotional attraction, emotional sensitivity, emotions felt (affection, passion, connection), emotional attachment and customer loyalty. The method of Structural Equation Modeling (SEM) is employed to test the research hypotheses. A quantitative study is conducted involving 480 Tunisian customers of mobile phone brands. The findings of this study indicate that the emotional attraction as well as the level of emotional sensitivity of customer influence positively his emotions felt toward a brand of mobile phone. These emotions predict an emotional attachment and a commitment toward the brand. Such commitment is vital to develop a loyalty of customer. This study provides significant managerial insights for marketers in order to formulate an effective communication strategy of their brands based on the seduction of customer emotions.

Author(s) Details

Zohra Ghali-Zinoubi
Department of Business Administration, College of Administrative and Financial Sciences, Saudi Electronic University, KSA and Department of Marketing, Higher Institute of Management, University of Tunis, Tunisia.

Comments

Popular posts from this blog

Greening Regional Airports: A Vision for Carbon Neutral Infrastructure | Chapter 12 | Contemporary Perspective on Science, Technology and Research Vol. 3

 This study provides an overview of the energy demand of a regional airport, divided into individual time horizons. The electrification of aircraft systems raises the question of whether airports will be among the largest electricity consumers in our infrastructure in the future. Sustainability and especially emission reductions are significant challenges for airports that are currently being addressed. The Clean Sky 2 project GENESIS addresses the environmental sustainability of hybrid-electric 50-passenger aircraft systems in a life cycle perspective to support the development of a technology roadmap for the transition to sustainable and competitive electric aircraft systems. This article originates from the GENESIS research and describes various options for ground power supply at a regional airport. Potential solutions for airport infrastructure with a short (2030), medium (2040), and long (2050) time horizon are proposed. In addition to the environmental and conservation benefi...

Occipital Dermal Sinus Tract Causing Craniospinal Infection: A Review | Chapter 13 | New Visions in Medicine and Medical Science Vol. 4

  Dermal sinus is a rare congenital condition characterized by a pathological tract connecting the skin to deeper tissues of the central nervous system, potentially leading to severe infectious complications. It arises from a failure in the separation of ectodermal layers during early gestation. Diagnosing dermal sinus tract in newborns requires a careful physical examination, focusing on midline dimples in the occipital region associated with cutaneous abnormalities like hairy nevus or hyperpigmentation. The presence of drainage, abnormal hair distribution, or localized swelling may indicate a sinus tract. Regular examination for dimples or sinuses is recommended for infants and children with recurrent meningitis or infections. Early detection is crucial to prevent severe complications like meningitis, with Staphylococcus aureus being a common causative organism. Neuroradiological studies, including computed tomography (CT) scan and magnetic resonance imaging (MRI), with histopath...

Alkali Element Modification of Glucose Molecules as a Method to Dissolve Cancer Cells | Chapter 12 | New Visions in Medicine and Medical Science Vol. 4

  The present study highlights about alkali element modification of glucose molecules as a method to dissolve cancer cells. The central regulation of the mechanisms governing cell proliferation has little effect on cancer cells. Cancer cells are entirely independent of the central command and divide and proliferate on their own, making it challenging to activate their response mechanism. Precisely, this is the reason why they are at risk to the health of humans and/or any biological entities. Instead of trying to reconnect the central command of the growth control mechanism to cancer cells that are already out of the range, we present a method of using the cancer cell’s own irresponsive and uncontrolled growth mechanism to their disadvantage and destroy the cancer cells. We found that this is achievable in an atomic/molecular level study of the glucose molecule, which is the primary food source used for growth and energy generation by all cells in the body, including the cancer cel...