Skip to main content

Theoretical Verification of Formula for Charge Function in Time q = c * v in RC Circuit for Charging/Discharging of Fractional & Ideal Capacitor | Chapter 01 | Theory and Applications of Physical Science Vol. 1

Here in this Chapter the verification of newly developed formula of charge storage in capacitor as   q = c*v, in RC circuit, is carried out in order  to get validation for ideal loss less capacitor as well as fractional order capacitors for charging and discharging cases. This new formula is generalization of charge storage mechanism in capacitors dielectric relaxations (with and without memory effect), which is different to usual and conventional way of writing capacitance multiplied by voltage to get charge stored in a capacitor   i.e. q = cv. We use this new formulation i.e. q = c*v in the RC circuits to verify the results that are obtained via classical circuit theory, for a case of classical ideal loss less capacitor as well as for case for fractional capacitor. The use of this formulation is suited for super-capacitors, Constant Phase Elements (CPE), and for dielectric relaxations that show memory effect as they show fractional order in their behavior. This new formula is used to get the ‘memory effect’ that is observed in self-discharging phenomena of super-capacitors-that memorizes its history of charging profile. Special emphasis is given to detailed derivational steps in order to get clarity in usage of this new formula in the RC circuit examples. This Chapter validates the new formula of charge   storage q = c*v, in capacitor, for circuital usage.

Author(s) Details

Shantanu Das
Scientist Reactor Control Division, E&I Group BARC, Mumbai-400085, India and Department of Physics, Jadavpur University, Kolkata-700032, India.

View Volume:


Popular posts from this blog

Consensus Summit: Lipids and Cardiovascular Health in the Nigerian Population | Chapter 09 | Current Trends in Food Science Vol. 1

Aims: To issue a consensus statement on Lipids and Cardiovascular Health and the impact of their interrelationship in Nigerian Population. Study Design: Experts from a range of relevant disciplines, deliberated on different aspects of Lipids and Cardiovascular Health in the Nigerian Population at a Summit. Place and Duration of Study: The Summit was held in April 2016 at the Nigerian Institute of Medical Research. Methodology: Presentations were made on central themes after which expert participants split into four different groups to consider the questions relevant to different sub themes of the title. Consensus was arrived at, from presentations of groups at plenary. Conclusion: With the increase in the prevalence of NCDs, especially Cardiovascular Disease in Nigeria, and the documented evidence of deleterious effects of lipids, the expert panel called for an urgent need to advocate for the general public and health professionals to make heart-friendly

A Review on Gongronema latifolium, an Extremely Useful Plant with Great Prospects | Chapter 11 | Recent Advances in Biological Research Vol. 3

Gongronema latifolium is a plant that has a wide range of nutritional and ethnomedical uses in different tropical African communities. Scientific reports on the chemical composition and bioactivity (anti-inflammatory, antimicrobial, antidiabetic, antioxidant, anticancer and allelopathic properties) of the plant material by different authors are discussed in this review. Future prospects of the plant extracts in the areas of herbal formulations, food preservation, alcoholic fermentation and beer production, drug discovery and allelopathy are also highlighted. Author   Details: Olugbenga Morebise Faculty of Basic Medical Sciences, All Saints University School of Medicine, Roseau, Commonwealth of Dominica. Read full article: View Volume:

An Overview of Ultrasonic Technology and Its Applications in Food Processing, Preservation and Quality Control | Chapter 03 | Current Research in Science and Technology Vol. 3

Ultrasound is one of the emerging technologies that were developed to minimize processing, maximize quality and ensure the safety of food products. In recent years, ultrasound technology has been used as an alternative processing option to conventional thermal approaches. Although Ultrasonication methods have been used for years in research and diagnostics, major advances have been made in the last decade. The applications for which high power ultrasound can be used range from existing processes that are enhanced by the retrofitting of high power ultrasonic technology, to the development of processes up to now not possible with conventional energy sources. The present paper reviews the generation, principle mechanism, properties, process parameters, applications, merits and demerits and future trends of the ultrasound technology in the food processing. Author(s) Details Er. Bogala Madhu Department of Processing and Food Engineering, College of Technology and Engineering, MP