Skip to main content

The Diversity of Green Bean Biochemical Compounds in Robusta Coffee (Coffea canephora Pierre ex A. Froehner) as Evaluated by Near Infrared Spectroscopy | Chapter 07 | Advances and Trends in Agricultural Sciences Vol. 3

Aims: This study characterized biochemical compound variability that influence green bean quality in C. canephora as a basis for identifying heterogeneous genotypes for use in crop improvement because genetic erosion aided by climate change effects is gradually threatening the cultivation of Ugandan Robusta coffee (Coffea canephora) local races.

Study Design: Four hundred and fifty four accessions from twenty four districts were analyzed with Near Infra Red Spectroscopy (NIRS) for six biochemical compounds using calibrations developed at CIRAD, France.

Place and Duration of Study: This work was conducted at the National Coffee Resources Research Institute (NaCORRI), Uganda between January 2007 and December 2013.

Methodology: Spectrometer Nirsystem 6500 Foss- (Denmark) machine and Software ISI NIRS 2 version 4.11 (Infra Soft International, Port Matilda, USA) were used to analyze ground samples in diffuse reflectance from 400 nm to 2500 nm (2 nm steps) and predictive models were used to quantify the biochemical contents in the green beans. Data was analyzed with XLSTAT version 2011.2.05 (Addinsoft), Paris, France.

Results: Chlorogenic acid and fat concentrations of 13.26 and 13.19% dry matter respectively reported in this study were much higher than 5.88 and 9.0% dry matter respectively reported earlier. Caffeine concentrations were positively significantly correlated with cholorogenic acid but negatively significantly correlated with trigonelline, sucrose, fat and dry matter contents. Caffeine and chlorogenic acid concentrations increased with age whereas trigonelline declined as trees aged. Chlorogenic acid and trigonelline concentrations were at their lowest levels in elevations of between 1000- 1200 metres above sea level and like fat and dry matter concentrations, the compounds were at their highest levels in higher elevations of about 1500 metres above sea level. Local landraces, ‘’nganda’’ and ‘’erecta’’ had higher concentrations of chlorogenic acid, sucrose and caffeine than improved, hybrid and commercial types.

Conclusions: Ugandan C. canephora caffeine content was lower than that of West-African Robusta coffee but higher than that of Arabica coffee. Four distinct diversity groups derived from the six biochemical compounds represented the major organoleptic categories. The results reported here will be useful in defining the desirable cup qualities of Robusta coffee as demanded by world markets.

Author(s) Details

Prof. Kahiu Ngugi
Department of Plant Sciences and Crop Protection, Faculty of Agriculture, College of Agriculture and Veterinary Sciences, University of Nairobi, P.O.Box 30197-00100, Nairobi, Kenya.

Pauline Aluka
National Agricultural Research Organization (NARO), National Coffee Resources Research, Institute (NaCORI), P.O.Box 185, Mukono, Uganda.

View Volume:


Popular posts from this blog

Consensus Summit: Lipids and Cardiovascular Health in the Nigerian Population | Chapter 09 | Current Trends in Food Science Vol. 1

Aims: To issue a consensus statement on Lipids and Cardiovascular Health and the impact of their interrelationship in Nigerian Population. Study Design: Experts from a range of relevant disciplines, deliberated on different aspects of Lipids and Cardiovascular Health in the Nigerian Population at a Summit. Place and Duration of Study: The Summit was held in April 2016 at the Nigerian Institute of Medical Research. Methodology: Presentations were made on central themes after which expert participants split into four different groups to consider the questions relevant to different sub themes of the title. Consensus was arrived at, from presentations of groups at plenary. Conclusion: With the increase in the prevalence of NCDs, especially Cardiovascular Disease in Nigeria, and the documented evidence of deleterious effects of lipids, the expert panel called for an urgent need to advocate for the general public and health professionals to make heart-friendly

A Review on Gongronema latifolium, an Extremely Useful Plant with Great Prospects | Chapter 11 | Recent Advances in Biological Research Vol. 3

Gongronema latifolium is a plant that has a wide range of nutritional and ethnomedical uses in different tropical African communities. Scientific reports on the chemical composition and bioactivity (anti-inflammatory, antimicrobial, antidiabetic, antioxidant, anticancer and allelopathic properties) of the plant material by different authors are discussed in this review. Future prospects of the plant extracts in the areas of herbal formulations, food preservation, alcoholic fermentation and beer production, drug discovery and allelopathy are also highlighted. Author   Details: Olugbenga Morebise Faculty of Basic Medical Sciences, All Saints University School of Medicine, Roseau, Commonwealth of Dominica. Read full article: View Volume:

Dictionary of Medicinal Plants - Scientific Names, Family and Selected Vernacular (English, Sinhala, Sanskrit and Tamil) Names | Book Publisher International

Medicinal plants have been known for centuries and are highly valued all over the world as a rich source of therapeutic agents of medicinal plants for public health care in developing nations [65]. Even today, the WHO estimates that up to 80 percent of the world population still relies mainly on traditional remedies such as herbs for their primary health care [13]. Ahmed et al. mentioned that according to a survey conducted by W.H.O., traditional healers treat 65% patients in Sri Lanka and 80% in India [3]. According to the WHO, around 21,000 plant species have the potential for being used as medicinal plants. Different ethnic and different language speaking peoples are living in Asian countries. Plants are commonly known by their local names in every part of the world. These local names play a very important role in ethno-botanical study of a specific tribe or region. Local names given to plants by indigenous people in their local dialects often reflect a broad spectrum of inf