Skip to main content

Bioinformatics Based Investigation on the Assortment of Industrially Accessible Azodyes with Azoreductase Enzyme of Pseudomonas putida | Chapter 9 | Current Strategies in Biotechnology and Bioresource Technology Vol. 1

Azo dyes are the most widely applied chemical dyes that have also raised great concerns for environmental contamination and human health issues. There has been an increased interest in discovering new novel bioremediation strategies to degrade azo dyes for environmental issues and also economic purposes. Azoreductase are key enzymes evolved in nature capable of degrading the azo dyes. As azoreductase enzyme is a key enzyme in degrading these azo dyes, they are good and potential candidates for industrial wastewater treatment and environmental restoration. The initial critical step of reduction of azo bond during the metabolism of azo dyes is catalysed by a group of NADH and FAD dependant enzyme called azoreductase. Although several azoreductase have been identified from microorganisms and partially characterized, very little is known about the structural basis of the substrate specificity and the nature of catalysis. Azoreductase enzyme of Pseudomonas putida has a wider broad spectrum of substrate specificity and capable of degrading a wide variety of azo dyes. In the present study, the crystal structure of the enzyme from PDB and 10 azo dyes from NCBI PubChem compound were retrieved and their interactions were studied. These azo dyes were then docked with the FMN-dependent NADH-azoreductase enzyme to analyse the binding affinity of the azo dyes with the enzyme and predict the catalytic sites. Consequently, the catalytic residues of FMN-dependent and NADH dependent enzyme were then analysed in terms of properties including function, hydrogen bonding and flexibility. The results suggest that Ala-114, Phe-172 and Glu-174 play a predominant role as catalytic site residues in the enzyme. Furthermore, the approach emphasis on predicting the active sites of this enzyme where substrates can bind in order to give a better understanding of the biodegradation of some of the commercially important azodyes mediated by azoreductase. These results will pave way for further increase in azoreductase activity and for better understanding of the dye degradation pathway. In addition to it, the different types of azo reductases can be further biochemically characterized for their novelty in near future.
Author(s) Details

Mr. Bikash Thakuria
Bioinformatics Centre, Department of Biotechnology, St. Edmund’s College, Shillong – 793003, Meghalaya, India.

Dr. Samrat Adhikari
Bioinformatics Centre, Department of Biotechnology, St. Edmund’s College, Shillong – 793003, Meghalaya, India
View Book - http://bp.bookpi.org/index.php/bpi/catalog/book/151

Comments

Popular posts from this blog

Greening Regional Airports: A Vision for Carbon Neutral Infrastructure | Chapter 12 | Contemporary Perspective on Science, Technology and Research Vol. 3

 This study provides an overview of the energy demand of a regional airport, divided into individual time horizons. The electrification of aircraft systems raises the question of whether airports will be among the largest electricity consumers in our infrastructure in the future. Sustainability and especially emission reductions are significant challenges for airports that are currently being addressed. The Clean Sky 2 project GENESIS addresses the environmental sustainability of hybrid-electric 50-passenger aircraft systems in a life cycle perspective to support the development of a technology roadmap for the transition to sustainable and competitive electric aircraft systems. This article originates from the GENESIS research and describes various options for ground power supply at a regional airport. Potential solutions for airport infrastructure with a short (2030), medium (2040), and long (2050) time horizon are proposed. In addition to the environmental and conservation benefi...

Risk Factors for Postpartum Psychiatric Disorders. A Review of the Literature | Chapter 8 | New Visions in Medicine and Medical Science Vol. 4

  Objective: The aim of this study was to explore the risk factors for the development of postpartum psychiatric disorders through international literature. Materials and Methods: Throughout many articles in PubMed, Google scholar and PsycInfo, a great amount of recent data was gathered to identify the disorders that are most common as well as their risk factors. Results: After childbirth, most commonly women experience postpartum depression, anxiety disorders, post-traumatic stress disorder and postpartum psychosis. All the disorders have many similar risk-factors with the main one being preexisting psychiatric disorder and many similar symptoms too. Conclusions: Women after childbirth are at risk of experience many psychiatric disorders, such as postpartum distress, postpartum post traumatic stress disorder and even more rarely postpartum psychosis. It is important to provide comprehensive support to ensure the well-being of both the mother and the infant and this will b...

Alkali Element Modification of Glucose Molecules as a Method to Dissolve Cancer Cells | Chapter 12 | New Visions in Medicine and Medical Science Vol. 4

  The present study highlights about alkali element modification of glucose molecules as a method to dissolve cancer cells. The central regulation of the mechanisms governing cell proliferation has little effect on cancer cells. Cancer cells are entirely independent of the central command and divide and proliferate on their own, making it challenging to activate their response mechanism. Precisely, this is the reason why they are at risk to the health of humans and/or any biological entities. Instead of trying to reconnect the central command of the growth control mechanism to cancer cells that are already out of the range, we present a method of using the cancer cell’s own irresponsive and uncontrolled growth mechanism to their disadvantage and destroy the cancer cells. We found that this is achievable in an atomic/molecular level study of the glucose molecule, which is the primary food source used for growth and energy generation by all cells in the body, including the cancer cel...