Skip to main content

Toxicological Bioassay of Petroleum Products (Kerosene) in Tri-aquatic Ecosystem Using Pollution Bio-monitor Pseudomonas sp | Chapter 1 | Theory and Applications of Microbiology and Biotechnology Vol. 3

The toxicological bioassay of petroleum products (industrial and local ‘kpo-fire’ refined Kerosene) in tri-aquatic ecosystem (marine, brackish and freshwater) using pollution bio-monitor Pseudomonas sp. were investigated. The study employs experimental examination and statistical analysis of data and interpretation. It was designed to evaluate the different kerosene concentration and the duration of exposure that could cause potential toxicological effect on Pseudomonas sp. in tri-aquatic ecosystem which was used as indices to access level of pollution. Standard microbiological techniques were used; toxicity procedure were applied using local and industrial refined kerosene; prepared at concentrations of 1.625%, 3.25%, 6.5%, 12.5% and 25% in fresh, brackish and marine water; total of 36 different microcosms. These were tested with Pseudomonas sp. for 0, 4, 8, 12 and 24 h separately for each toxicant. The cultures were incubated at 35°C for 24 hours. The median lethal concentration (LC50) was employed to compute the toxicities of the different toxicants on the test organism. The results specify that percentage (%) logarithm of mortality of Pseudomonas sp. increases with increased toxicants concentration and exposure time. The pollution bio-monitor Pseudomonas sp. demonstrated sensitivity to the toxicity of local and industrially refined kerosene. The sensitivity showed variations, toxic level decreased in the following order (noting that the lower the LC50, the more toxic the toxicants): Industrial refined kerosene in fresh water (18.79%) > Industrial refined kerosene in brackish water (20.81%) > Local refined kerosene in brackish water (21.47%) > Industrial refined kerosene in marine water (22.66%) > Local refined kerosene > (24.25) > Local refined kerosene in marine water (24.94%). Using the Pollution/Toxicity Bio-monitoring evaluation Chart; Local refined kerosene in marine, brackish and freshwater were ‘Toxic [High], Industrial refined kerosene in marine water was ‘Toxic [High]’ while Industrial refined kerosene in brackish and freshwater were ‘Toxic [very High]’. Conclusion: The study showed that industrial refined kerosene in fresh water (LC50 = 18.8%) has   the highest toxicity strength while local refined kerosene in marine water (LC50 = 24.92%) has the least toxicity strength on Pseudomonas sp. in the tri-aquatic ecosystem. These results show that local and industrial refined kerosene can inhibit the growth of Pseudomonas sp. in an aquatic                 ecosystem; noting that Pseudomonas sp. is one of the most effective biodegrading bacteria in ecological biogeochemical cycles, pollutant removal/remediation and a key pollution bio-monitoring. Pseudomonas sp. tolerance for hydrocarbon and its initial sensitivity per mortality within 24                           hours of exposure could be accessed as indices to measure level of pollution or toxicity of petroleum products.


Author(s) Details

Dr. Renner Renner Nrior

 Department of Microbiology, Faculty of Science, Rivers State University, Port Harcourt, Nigeria.
View Book: - http://bp.bookpi.org/index.php/bpi/catalog/book/154

Comments

Popular posts from this blog

Greening Regional Airports: A Vision for Carbon Neutral Infrastructure | Chapter 12 | Contemporary Perspective on Science, Technology and Research Vol. 3

 This study provides an overview of the energy demand of a regional airport, divided into individual time horizons. The electrification of aircraft systems raises the question of whether airports will be among the largest electricity consumers in our infrastructure in the future. Sustainability and especially emission reductions are significant challenges for airports that are currently being addressed. The Clean Sky 2 project GENESIS addresses the environmental sustainability of hybrid-electric 50-passenger aircraft systems in a life cycle perspective to support the development of a technology roadmap for the transition to sustainable and competitive electric aircraft systems. This article originates from the GENESIS research and describes various options for ground power supply at a regional airport. Potential solutions for airport infrastructure with a short (2030), medium (2040), and long (2050) time horizon are proposed. In addition to the environmental and conservation benefi...

Risk Factors for Postpartum Psychiatric Disorders. A Review of the Literature | Chapter 8 | New Visions in Medicine and Medical Science Vol. 4

  Objective: The aim of this study was to explore the risk factors for the development of postpartum psychiatric disorders through international literature. Materials and Methods: Throughout many articles in PubMed, Google scholar and PsycInfo, a great amount of recent data was gathered to identify the disorders that are most common as well as their risk factors. Results: After childbirth, most commonly women experience postpartum depression, anxiety disorders, post-traumatic stress disorder and postpartum psychosis. All the disorders have many similar risk-factors with the main one being preexisting psychiatric disorder and many similar symptoms too. Conclusions: Women after childbirth are at risk of experience many psychiatric disorders, such as postpartum distress, postpartum post traumatic stress disorder and even more rarely postpartum psychosis. It is important to provide comprehensive support to ensure the well-being of both the mother and the infant and this will b...

Alkali Element Modification of Glucose Molecules as a Method to Dissolve Cancer Cells | Chapter 12 | New Visions in Medicine and Medical Science Vol. 4

  The present study highlights about alkali element modification of glucose molecules as a method to dissolve cancer cells. The central regulation of the mechanisms governing cell proliferation has little effect on cancer cells. Cancer cells are entirely independent of the central command and divide and proliferate on their own, making it challenging to activate their response mechanism. Precisely, this is the reason why they are at risk to the health of humans and/or any biological entities. Instead of trying to reconnect the central command of the growth control mechanism to cancer cells that are already out of the range, we present a method of using the cancer cell’s own irresponsive and uncontrolled growth mechanism to their disadvantage and destroy the cancer cells. We found that this is achievable in an atomic/molecular level study of the glucose molecule, which is the primary food source used for growth and energy generation by all cells in the body, including the cancer cel...